We provide a quick overview of various calculus tools and of the main results concerning the heat flow on compact metric measure spaces, with applications to spaces with lower Ricci curvature bounds. Topics include the Hopf-Lax semigroup and the Hamilton-Jacobi equation in metric spaces, a new approach to differentiation and to the theory of Sobolev spaces over metric measure spaces, the equivalence of the L2-gradient flow of a suitably defined “Dirichlet energy” and the Wasserstein gradient flow of the relative entropy functional, a metric version of Brenier’s Theorem, and a new (stronger) definition of Ricci curvature bound from below for metric measure spaces. This new notion is stable w.r.t. measured Gromov- Hausdorff convergence and it is strictly connected with the linearity of the heat flow.
Heat flow and calculus on metric measure spaces with ricci curvature bounded below—The compact case / Ambrosio, L.; Gigli, N.; Savaré, G.. - 4:(2013), pp. 63-115. [10.1007/978-88-470-2592-9_8]
Heat flow and calculus on metric measure spaces with ricci curvature bounded below—The compact case
Gigli, N.;
2013-01-01
Abstract
We provide a quick overview of various calculus tools and of the main results concerning the heat flow on compact metric measure spaces, with applications to spaces with lower Ricci curvature bounds. Topics include the Hopf-Lax semigroup and the Hamilton-Jacobi equation in metric spaces, a new approach to differentiation and to the theory of Sobolev spaces over metric measure spaces, the equivalence of the L2-gradient flow of a suitably defined “Dirichlet energy” and the Wasserstein gradient flow of the relative entropy functional, a metric version of Brenier’s Theorem, and a new (stronger) definition of Ricci curvature bound from below for metric measure spaces. This new notion is stable w.r.t. measured Gromov- Hausdorff convergence and it is strictly connected with the linearity of the heat flow.File | Dimensione | Formato | |
---|---|---|---|
heatcompact-cvgmt.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Non specificato
Dimensione
508.65 kB
Formato
Adobe PDF
|
508.65 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.