This text is an expanded version of the lectures given by the first author in the 2009 CIME summer school of Cetraro. It provides a quick and reasonably account of the classical theory of optimal mass transportation and of its more recent developments, including the metric theory of gradient flows, geometric and functional inequalities related to optimal transportation, the first and second order differential calculus in the Wasserstein space and the synthetic theory of metric measure spaces with Ricci curvature bounded from below.
A user's guide to optimal transport / Ambrosio, L.; Gigli, Nicola. - 2062:(2013), pp. 1-155. [10.1007/978-3-642-32160-3_1]
A user's guide to optimal transport
Gigli, Nicola
2013-01-01
Abstract
This text is an expanded version of the lectures given by the first author in the 2009 CIME summer school of Cetraro. It provides a quick and reasonably account of the classical theory of optimal mass transportation and of its more recent developments, including the metric theory of gradient flows, geometric and functional inequalities related to optimal transportation, the first and second order differential calculus in the Wasserstein space and the synthetic theory of metric measure spaces with Ricci curvature bounded from below.File | Dimensione | Formato | |
---|---|---|---|
users_guide-final.pdf
Open Access dal 05/09/2014
Tipologia:
Documento in Post-print
Licenza:
Non specificato
Dimensione
941.41 kB
Formato
Adobe PDF
|
941.41 kB | Adobe PDF | Visualizza/Apri |
Gigli_Ambrosio.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.