This chapter reviews techniques of model reduction of fluid dynamics systems. Fluid systems are known to be difficult to reduce efficiently due to several reasons. First of all, they exhibit strong nonlinearities — which are mainly related either to nonlinear convection terms and/or some geometric variability — that often cannot be treated by simple linearization. Additional difficulties arise when attempting model reduction of unsteady flows, especially when long-term transient behavior needs to be accurately predicted using reduced order models and more complex features, such as turbulence or multiphysics phenomena, have to be taken into consideration. We first discuss some general principles that apply to many parametric model order reduction problems, then we apply them on steady and unsteady viscous flows modelled by the incompressible Navier-Stokes equations. We address questions of inf-sup stability, certification through error estimation, computational issues and — in the unsteady case — long-time stability of the reduced model. Moreover, we provide an extensive list of literature references.

Model Order Reduction in Fluid Dynamics: Challenges and Perspectives / Lassila, T.; Manzoni, Andrea; Quarteroni, A.; Rozza, Gianluigi. - 9:(2014), pp. 9.235-9.273. [10.1007/978-3-319-02090-7_9]

Model Order Reduction in Fluid Dynamics: Challenges and Perspectives

Rozza, Gianluigi
2014-01-01

Abstract

This chapter reviews techniques of model reduction of fluid dynamics systems. Fluid systems are known to be difficult to reduce efficiently due to several reasons. First of all, they exhibit strong nonlinearities — which are mainly related either to nonlinear convection terms and/or some geometric variability — that often cannot be treated by simple linearization. Additional difficulties arise when attempting model reduction of unsteady flows, especially when long-term transient behavior needs to be accurately predicted using reduced order models and more complex features, such as turbulence or multiphysics phenomena, have to be taken into consideration. We first discuss some general principles that apply to many parametric model order reduction problems, then we apply them on steady and unsteady viscous flows modelled by the incompressible Navier-Stokes equations. We address questions of inf-sup stability, certification through error estimation, computational issues and — in the unsteady case — long-time stability of the reduced model. Moreover, we provide an extensive list of literature references.
2014
9
Reduced Order Methods For Modeling And Computational Reduction
235
273
https://infoscience.epfl.ch/record/187600/files/LMQR_ROMReview.pdf
http://eprints.whiterose.ac.uk/82506/
https://www.mate.polimi.it/biblioteca/add/qmox/29-2013.pdf
Lassila, T.; Manzoni, Andrea; Quarteroni, A.; Rozza, Gianluigi
File in questo prodotto:
File Dimensione Formato  
29-2013.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 241.99 kB
Formato Adobe PDF
241.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/15172
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 257
social impact