We prove that the entropy for an $L^\infty$-solution to a scalar conservation laws with continuous initial data is concentrated on a countably $1$-rectifiable set. To prove this result we introduce the notion of Lagrangian representation of the solution and give regularity estimates on the solution.

On the concentration of entropy for scalar conservation laws / Bianchini, Stefano; Marconi, Elio. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 9:1(2016), pp. 73-88. [10.3934/dcdss.2016.9.73]

On the concentration of entropy for scalar conservation laws

Bianchini, Stefano;Marconi, Elio
2016-01-01

Abstract

We prove that the entropy for an $L^\infty$-solution to a scalar conservation laws with continuous initial data is concentrated on a countably $1$-rectifiable set. To prove this result we introduce the notion of Lagrangian representation of the solution and give regularity estimates on the solution.
2016
9
1
73
88
http://cvgmt.sns.it/paper/3136/
Bianchini, Stefano; Marconi, Elio
File in questo prodotto:
File Dimensione Formato  
Bianchini.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 404.1 kB
Formato Adobe PDF
404.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
contributo_secchi_2.pdf

Open Access dal 01/01/2017

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 347.19 kB
Formato Adobe PDF
347.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/15422
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact