We prove that the entropy for an $L^\infty$-solution to a scalar conservation laws with continuous initial data is concentrated on a countably $1$-rectifiable set. To prove this result we introduce the notion of Lagrangian representation of the solution and give regularity estimates on the solution.
On the concentration of entropy for scalar conservation laws / Bianchini, Stefano; Marconi, Elio. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 9:1(2016), pp. 73-88. [10.3934/dcdss.2016.9.73]
On the concentration of entropy for scalar conservation laws
Bianchini, Stefano;Marconi, Elio
2016-01-01
Abstract
We prove that the entropy for an $L^\infty$-solution to a scalar conservation laws with continuous initial data is concentrated on a countably $1$-rectifiable set. To prove this result we introduce the notion of Lagrangian representation of the solution and give regularity estimates on the solution.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Bianchini.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
404.1 kB
Formato
Adobe PDF
|
404.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
contributo_secchi_2.pdf
Open Access dal 01/01/2017
Tipologia:
Documento in Post-print
Licenza:
Non specificato
Dimensione
347.19 kB
Formato
Adobe PDF
|
347.19 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.