Let M and N be Lagrangian submanifolds of a complex symplectic manifold S . We construct a Gerstenhaber algebra structure on $$mathcal{T}or_ast^{mathcal{O}_S}(mathcal{O}_M,mathcal{O}_N)$$ and a compatible Batalin–Vilkovisky module structure on $$mathcal{E}xt^ast_{mathcal{O}_S}(mathcal{O}_M,mathcal{O}_N)$$ . This gives rise to a de Rham type cohomology theory for Lagrangian intersections.

Gerstenhaber and Batalin-Vilkovisky structures on Lagrangian intersections / Behrend, K; Fantechi, B. - 1:(2009), pp. 1-47. [10.1007/978-0-8176-4745-2_1]

Gerstenhaber and Batalin-Vilkovisky structures on Lagrangian intersections

FANTECHI B
2009-01-01

Abstract

Let M and N be Lagrangian submanifolds of a complex symplectic manifold S . We construct a Gerstenhaber algebra structure on $$mathcal{T}or_ast^{mathcal{O}_S}(mathcal{O}_M,mathcal{O}_N)$$ and a compatible Batalin–Vilkovisky module structure on $$mathcal{E}xt^ast_{mathcal{O}_S}(mathcal{O}_M,mathcal{O}_N)$$ . This gives rise to a de Rham type cohomology theory for Lagrangian intersections.
2009
1
Algebra, arithmetic, and geometry: in honor of Yu. I. Manin
1
47
https://doi.org/10.1007/978-0-8176-4745-2_1
Behrend, K; Fantechi, B
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/15454
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact