Let M and N be Lagrangian submanifolds of a complex symplectic manifold S . We construct a Gerstenhaber algebra structure on $$mathcal{T}or_ast^{mathcal{O}_S}(mathcal{O}_M,mathcal{O}_N)$$ and a compatible Batalin–Vilkovisky module structure on $$mathcal{E}xt^ast_{mathcal{O}_S}(mathcal{O}_M,mathcal{O}_N)$$ . This gives rise to a de Rham type cohomology theory for Lagrangian intersections.
Gerstenhaber and Batalin-Vilkovisky structures on Lagrangian intersections / Behrend, K; Fantechi, B. - 1:(2009), pp. 1-47. [10.1007/978-0-8176-4745-2_1]
Gerstenhaber and Batalin-Vilkovisky structures on Lagrangian intersections
FANTECHI B
2009-01-01
Abstract
Let M and N be Lagrangian submanifolds of a complex symplectic manifold S . We construct a Gerstenhaber algebra structure on $$mathcal{T}or_ast^{mathcal{O}_S}(mathcal{O}_M,mathcal{O}_N)$$ and a compatible Batalin–Vilkovisky module structure on $$mathcal{E}xt^ast_{mathcal{O}_S}(mathcal{O}_M,mathcal{O}_N)$$ . This gives rise to a de Rham type cohomology theory for Lagrangian intersections.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.