We develop a rigorous second order analysis on the space of probability measures on a Riemannian manifold endowed with the quadratic optimal transport distance $W_2$. Our discussion comprehends: definition of covariant derivative, discussion of the problem of existence of parallel transport, calculus of the Riemannian curvature tensor, differentiability of the exponential map and existence of Jacobi fields. This approach does not require any smoothness assumption on the measures considered.

Second Order Analysis on (P-2(M), W-2) / Gigli, Nicola. - In: MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0065-9266. - 216:1018(2012), pp. 1-173. [10.1090/S0065-9266-2011-00619-2]

Second Order Analysis on (P-2(M), W-2)

Gigli, Nicola
2012-01-01

Abstract

We develop a rigorous second order analysis on the space of probability measures on a Riemannian manifold endowed with the quadratic optimal transport distance $W_2$. Our discussion comprehends: definition of covariant derivative, discussion of the problem of existence of parallel transport, calculus of the Riemannian curvature tensor, differentiability of the exponential map and existence of Jacobi fields. This approach does not require any smoothness assumption on the measures considered.
2012
216
1018
1
173
http://www.ams.org/books/memo/1018/
Gigli, Nicola
File in questo prodotto:
File Dimensione Formato  
memo619-gigli-REV-6-20-11.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/15700
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact