We develop a rigorous second order analysis on the space of probability measures on a Riemannian manifold endowed with the quadratic optimal transport distance $W_2$. Our discussion comprehends: definition of covariant derivative, discussion of the problem of existence of parallel transport, calculus of the Riemannian curvature tensor, differentiability of the exponential map and existence of Jacobi fields. This approach does not require any smoothness assumption on the measures considered.
Second Order Analysis on (P-2(M), W-2) / Gigli, Nicola. - In: MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0065-9266. - 216:1018(2012), pp. 1-173. [10.1090/S0065-9266-2011-00619-2]
Second Order Analysis on (P-2(M), W-2)
Gigli, Nicola
2012-01-01
Abstract
We develop a rigorous second order analysis on the space of probability measures on a Riemannian manifold endowed with the quadratic optimal transport distance $W_2$. Our discussion comprehends: definition of covariant derivative, discussion of the problem of existence of parallel transport, calculus of the Riemannian curvature tensor, differentiability of the exponential map and existence of Jacobi fields. This approach does not require any smoothness assumption on the measures considered.File | Dimensione | Formato | |
---|---|---|---|
memo619-gigli-REV-6-20-11.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.98 MB
Formato
Adobe PDF
|
1.98 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.