We introduce the notion of symmetric obstruction theory and study symmetric obstruction theories which are compatible with C*-actions. We prove that the contribution of an isolated fixed point under a C*-action to equivariant Donaldson-Thomas type invariants is +/- 1. As an application, we compute weighted Euler characteristics of all Hilbert schemes of points on any 3-fold. Moreover, we calculate the zero-dimensional Donaldson-Thomas invariants of any projective Calabi-Yau 3-fold. This proves a conjecture of Maulik-Nekrasov-Okounkov.

Symmetric obstruction theories and Hilbert schemes of points on threefolds / Behrend, K; Fantechi, Barbara. - In: ALGEBRA & NUMBER THEORY. - ISSN 1937-0652. - 2:3(2008), pp. 313-345. [10.2140/ant.2008.2.313]

Symmetric obstruction theories and Hilbert schemes of points on threefolds

Fantechi, Barbara
2008-01-01

Abstract

We introduce the notion of symmetric obstruction theory and study symmetric obstruction theories which are compatible with C*-actions. We prove that the contribution of an isolated fixed point under a C*-action to equivariant Donaldson-Thomas type invariants is +/- 1. As an application, we compute weighted Euler characteristics of all Hilbert schemes of points on any 3-fold. Moreover, we calculate the zero-dimensional Donaldson-Thomas invariants of any projective Calabi-Yau 3-fold. This proves a conjecture of Maulik-Nekrasov-Okounkov.
2008
2
3
313
345
Behrend, K; Fantechi, Barbara
File in questo prodotto:
File Dimensione Formato  
0512556v1.pdf

non disponibili

Licenza: Non specificato
Dimensione 487.97 kB
Formato Adobe PDF
487.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/15802
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 101
  • ???jsp.display-item.citation.isi??? 96
social impact