In this note we present new KAM result about existence of Cantor families of small amplitude, analytic, quasi-periodic solutions of derivative wave equations, with zero Lyapunov exponents and whose linearized equation is reducible to constant coefficients. In turn, this result is derived by an abstract KAM theorem for infinite dimensional reversible dynamical systems.

Existence and stability of quasi-periodic solutions for derivative wave equations / Berti, M.; Biasco, L.; Procesi, M.. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1720-0768. - 24:2(2013), pp. 199-214. [10.4171/RLM/652]

Existence and stability of quasi-periodic solutions for derivative wave equations

Berti, M.;
2013-01-01

Abstract

In this note we present new KAM result about existence of Cantor families of small amplitude, analytic, quasi-periodic solutions of derivative wave equations, with zero Lyapunov exponents and whose linearized equation is reducible to constant coefficients. In turn, this result is derived by an abstract KAM theorem for infinite dimensional reversible dynamical systems.
2013
24
2
199
214
https://arxiv.org/abs/1209.5419
https://www.ems-ph.org/journals/show_abstract.php?issn=1120-6330&vol=24&iss=2&rank=4
Berti, M.; Biasco, L.; Procesi, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/15844
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 17
social impact