The case of a coupling between dark energy and matter [coupled quintessence (CQ)] or gravity [extended quintessence (EQ)] has recently attracted a deep interest and has been widely investigated both in the Einstein and in the Jordan frames (EF, JF), within scalar-tensor theories. Focusing on the simplest models proposed so far, in this paper we study the relation existing between the two scenarios, isolating the Weyl scaling which allows one to express them in the EF and JF. Moreover, we perform a comparative study of the behavior of linear perturbations in both scenarios, which turn out to behave in a markedly different way. In particular, while the clustering is enhanced in the considered CQ models with respect to the corresponding quintessence ones where the coupling is absent and to the ordinary cosmologies with a cosmological constant and cold dark matter (ΛCDM), structures in EQ models may grow slower. This is likely to have direct consequences on the inner properties of nonlinear structures, like cluster concentration, as well as on the weak lensing shear on large scales. Finally, we specialize our study for interfacing linear dynamics and N-body simulations in these cosmologies, giving a recipe for the corrections to be included in N-body codes in order to take into account the modifications to the expansion rate, growth of structures, and strength of gravity.

Coupled and extended quintessence: Theoretical differences and structure formation / Pettorino, Valeria; Baccigalupi, Carlo. - In: PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. - ISSN 1550-7998. - 77:10(2008), pp. 1-15. [10.1103/PhysRevD.77.103003]

Coupled and extended quintessence: Theoretical differences and structure formation

Pettorino, Valeria;Baccigalupi, Carlo
2008-01-01

Abstract

The case of a coupling between dark energy and matter [coupled quintessence (CQ)] or gravity [extended quintessence (EQ)] has recently attracted a deep interest and has been widely investigated both in the Einstein and in the Jordan frames (EF, JF), within scalar-tensor theories. Focusing on the simplest models proposed so far, in this paper we study the relation existing between the two scenarios, isolating the Weyl scaling which allows one to express them in the EF and JF. Moreover, we perform a comparative study of the behavior of linear perturbations in both scenarios, which turn out to behave in a markedly different way. In particular, while the clustering is enhanced in the considered CQ models with respect to the corresponding quintessence ones where the coupling is absent and to the ordinary cosmologies with a cosmological constant and cold dark matter (ΛCDM), structures in EQ models may grow slower. This is likely to have direct consequences on the inner properties of nonlinear structures, like cluster concentration, as well as on the weak lensing shear on large scales. Finally, we specialize our study for interfacing linear dynamics and N-body simulations in these cosmologies, giving a recipe for the corrections to be included in N-body codes in order to take into account the modifications to the expansion rate, growth of structures, and strength of gravity.
2008
77
10
1
15
103003
https://arxiv.org/abs/0802.1086
Pettorino, Valeria; Baccigalupi, Carlo
File in questo prodotto:
File Dimensione Formato  
PhysRevD.77.103003.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 382.48 kB
Formato Adobe PDF
382.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/15863
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 146
  • ???jsp.display-item.citation.isi??? 148
social impact