We consider a sequence of linear Dirichlet problems as follows $$\begin{cases}-\dive ( \s_\e \nabla u_\e) = f \; \text{in }\, \O, \cr u_\e \in H^1_0(\O),\end{cases} $$ with $(\s_\e)$ uniformly elliptic and possibly non-symmetric. Using \emph{purely variational arguments} we give an alternative proof of the compactness of $H$-convergence, originally proved by Murat and Tartar.
Gamma-convergence and H-convergence of linear elliptic operators / Ansini, Nadia; Dal Maso, Gianni; Zeppieri, C. I.. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 99:3(2013), pp. 321-329. [10.1016/j.matpur.2012.09.004]
Gamma-convergence and H-convergence of linear elliptic operators
Ansini, Nadia;Dal Maso, Gianni;
2013-01-01
Abstract
We consider a sequence of linear Dirichlet problems as follows $$\begin{cases}-\dive ( \s_\e \nabla u_\e) = f \; \text{in }\, \O, \cr u_\e \in H^1_0(\O),\end{cases} $$ with $(\s_\e)$ uniformly elliptic and possibly non-symmetric. Using \emph{purely variational arguments} we give an alternative proof of the compactness of $H$-convergence, originally proved by Murat and Tartar.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Ans-DM-Zep-JMPA2013.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
164.08 kB
Formato
Adobe PDF
|
164.08 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.