We consider a sequence of linear Dirichlet problems as follows $$\begin{cases}-\dive ( \s_\e \nabla u_\e) = f \; \text{in }\, \O, \cr u_\e \in H^1_0(\O),\end{cases} $$ with $(\s_\e)$ uniformly elliptic and possibly non-symmetric. Using \emph{purely variational arguments} we give an alternative proof of the compactness of $H$-convergence, originally proved by Murat and Tartar.

Gamma-convergence and H-convergence of linear elliptic operators / Ansini, Nadia; Dal Maso, Gianni; Zeppieri, C. I.. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 99:3(2013), pp. 321-329. [10.1016/j.matpur.2012.09.004]

Gamma-convergence and H-convergence of linear elliptic operators

Ansini, Nadia;Dal Maso, Gianni;
2013-01-01

Abstract

We consider a sequence of linear Dirichlet problems as follows $$\begin{cases}-\dive ( \s_\e \nabla u_\e) = f \; \text{in }\, \O, \cr u_\e \in H^1_0(\O),\end{cases} $$ with $(\s_\e)$ uniformly elliptic and possibly non-symmetric. Using \emph{purely variational arguments} we give an alternative proof of the compactness of $H$-convergence, originally proved by Murat and Tartar.
2013
99
3
321
329
http://preprints.sissa.it/xmlui/handle/1963/5878
Ansini, Nadia; Dal Maso, Gianni; Zeppieri, C. I.
File in questo prodotto:
File Dimensione Formato  
Ans-DM-Zep-JMPA2013.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 164.08 kB
Formato Adobe PDF
164.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/15913
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact