We construct a compactification $M^{\mu ss}$ of the Uhlenbeck Donaldson type for the moduli space of slope stable framed bundles. This is a kind of a moduli space of slope semistable framed sheaves. We show that there exists a projective morphism $\gamma \colon M^{ss} \to M^{\mu ss}$, where $M^{ss}$ is the moduli space of S-equivalence classes of Gieseker-semistable framed sheaves. The space $M^{\mu ss}$ has a natural set-theoretic stratification which allows one, via a Hitchin-Kobayashi correspondence, to compare it with the moduli spaces of framed ideal instantons.
Uhlenbeck-Donaldson compactification for framed sheaves on projective surfaces / Bruzzo, Ugo; Markushevich, Dimitri; Tikhomirov, Alexander. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 275:3-4(2013), pp. 1073-1093. [10.1007/s00209-013-1170-9]
Uhlenbeck-Donaldson compactification for framed sheaves on projective surfaces
Bruzzo, Ugo;
2013-01-01
Abstract
We construct a compactification $M^{\mu ss}$ of the Uhlenbeck Donaldson type for the moduli space of slope stable framed bundles. This is a kind of a moduli space of slope semistable framed sheaves. We show that there exists a projective morphism $\gamma \colon M^{ss} \to M^{\mu ss}$, where $M^{ss}$ is the moduli space of S-equivalence classes of Gieseker-semistable framed sheaves. The space $M^{\mu ss}$ has a natural set-theoretic stratification which allows one, via a Hitchin-Kobayashi correspondence, to compare it with the moduli spaces of framed ideal instantons.File | Dimensione | Formato | |
---|---|---|---|
FramedUhlenbeckMZ.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
320.04 kB
Formato
Adobe PDF
|
320.04 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.