We report the folding thermodynamics of ccUUCGgg and ccGAGAgg RNA tetraloops using atomistic molecular dynamics simulations. We obtain a previously unreported estimation of the folding free energy using parallel tempering in combination with well-tempered metadynamics. A key ingredient is the use of a recently developed metric distance, eRMSD, as a biased collective variable. We find that the native fold of both tetraloops is not the global free energy minimum using the AmberχOL3 force field. The estimated folding free energies are 30.2 ± 0.5 kJ/mol for UUCG and 7.5 ± 0.6 kJ/mol for GAGA, in striking disagreement with experimental data. We evaluate the viability of all possible one-dimensional backbone force field corrections. We find that disfavoring the gauche+ region of α and ζ angles consistently improves the existing force field. The level of accuracy achieved with these corrections, however, cannot be considered sufficient by judging on the basis of available thermodynamic data and solution experiments. © 2016 American Chemical Society.

Free Energy Landscape of GAGA and UUCG RNA Tetraloops

Bottaro, Sandro;Bussi, Giovanni
2016-01-01

Abstract

We report the folding thermodynamics of ccUUCGgg and ccGAGAgg RNA tetraloops using atomistic molecular dynamics simulations. We obtain a previously unreported estimation of the folding free energy using parallel tempering in combination with well-tempered metadynamics. A key ingredient is the use of a recently developed metric distance, eRMSD, as a biased collective variable. We find that the native fold of both tetraloops is not the global free energy minimum using the AmberχOL3 force field. The estimated folding free energies are 30.2 ± 0.5 kJ/mol for UUCG and 7.5 ± 0.6 kJ/mol for GAGA, in striking disagreement with experimental data. We evaluate the viability of all possible one-dimensional backbone force field corrections. We find that disfavoring the gauche+ region of α and ζ angles consistently improves the existing force field. The level of accuracy achieved with these corrections, however, cannot be considered sufficient by judging on the basis of available thermodynamic data and solution experiments. © 2016 American Chemical Society.
2016
7
20
4032
4038
https://arxiv.org/abs/1609.07898
http://cdsads.u-strasbg.fr/abs/2016arXiv160907898B
Bottaro, Sandro; Banáš, P.; Šponer, J.; Bussi, Giovanni
File in questo prodotto:
File Dimensione Formato  
2016 Bussi.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/15962
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 60
social impact