We provide a novel, unifying physical interpretation on the origin, the average shape, the scatter, and the cosmic evolution for the main sequences of starforming galaxies and active galactic nuclei at high redshift z $\gtrsim$ 1. We achieve this goal in a model-independent way by exploiting: (i) the redshift-dependent SFR functions based on the latest UV/far-IR data from HST/Herschel, and re- lated statistics of strong gravitationally lensed sources; (ii) deterministic evolutionary tracks for the history of star formation and black hole accretion, gauged on a wealth of multiwavelength observations including the observed Eddington ratio distribution. We further validate these ingredients by showing their consistency with the observed galaxy stellar mass functions and AGN bolometric luminosity functions at different redshifts via the continuity equation approach. Our analysis of the main sequence for high-redshift galaxies and AGNs highlights that the present data are consistently interpreted in terms of an in situ coevolution scenario for star formation and black hole accretion, envisaging these as local, time coordinated processes.
The Main Sequences of Star-Forming Galaxies and Active Galactic Nuclei at High Redshift / Mancuso, Claudia; Lapi, Andrea; Shi, Jingjing; Cai, Z. Y.; Gonzalez Nuevo, J.; Bethermin, Matthieu Michel; Danese, Luigi. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - 833:2(2016), pp. 1-15. [10.3847/1538-4357/833/2/152]
The Main Sequences of Star-Forming Galaxies and Active Galactic Nuclei at High Redshift
Mancuso, Claudia;Lapi, Andrea;Shi, Jingjing;Bethermin, Matthieu Michel;Danese, Luigi
2016-01-01
Abstract
We provide a novel, unifying physical interpretation on the origin, the average shape, the scatter, and the cosmic evolution for the main sequences of starforming galaxies and active galactic nuclei at high redshift z $\gtrsim$ 1. We achieve this goal in a model-independent way by exploiting: (i) the redshift-dependent SFR functions based on the latest UV/far-IR data from HST/Herschel, and re- lated statistics of strong gravitationally lensed sources; (ii) deterministic evolutionary tracks for the history of star formation and black hole accretion, gauged on a wealth of multiwavelength observations including the observed Eddington ratio distribution. We further validate these ingredients by showing their consistency with the observed galaxy stellar mass functions and AGN bolometric luminosity functions at different redshifts via the continuity equation approach. Our analysis of the main sequence for high-redshift galaxies and AGNs highlights that the present data are consistently interpreted in terms of an in situ coevolution scenario for star formation and black hole accretion, envisaging these as local, time coordinated processes.File | Dimensione | Formato | |
---|---|---|---|
Mancuso16b.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.