This paper proposes a direct approach to solve the Plateau's problem in codimension higher than one. The problem is formulated as the minimization of the Hausdorff measure among a family of d-rectifiable closed subsets of Rn: following the previous work [13], the existence result is obtained by a compactness principle valid under fairly general assumptions on the class of competitors. Such class is then specified to give meaning to boundary conditions. We also show that the obtained minimizers are regular up to a set of dimension less than (d-1). © 2015 Elsevier Inc. All rights reserved.
A direct approach to Plateau's problem in any codimension
De Philippis, Guido;
2016-01-01
Abstract
This paper proposes a direct approach to solve the Plateau's problem in codimension higher than one. The problem is formulated as the minimization of the Hausdorff measure among a family of d-rectifiable closed subsets of Rn: following the previous work [13], the existence result is obtained by a compactness principle valid under fairly general assumptions on the class of competitors. Such class is then specified to give meaning to boundary conditions. We also show that the obtained minimizers are regular up to a set of dimension less than (d-1). © 2015 Elsevier Inc. All rights reserved.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2016 De Philippis.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
456.39 kB
Formato
Adobe PDF
|
456.39 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.