We study the inverse problem for semi-simple Frobenius manifolds of dimension 3 and we explicitly compute a parametric form of the solutions of theWDVV equations in terms of Painlevé VI transcendents. We show that the solutions are labeled by a set of monodromy data. We use our parametric form to explicitly construct polynomial and algebraic solutions and to derive the generating function of Gromov–Witten invariants of the quantum cohomology of the two-dimensional projective space. The procedure is a relevant application of the theory of isomonodromic deformations

Inverse Problem and Monodromy Data for 3-dimensional Frobenius Manifolds

Guzzetti, Davide
2001-01-01

Abstract

We study the inverse problem for semi-simple Frobenius manifolds of dimension 3 and we explicitly compute a parametric form of the solutions of theWDVV equations in terms of Painlevé VI transcendents. We show that the solutions are labeled by a set of monodromy data. We use our parametric form to explicitly construct polynomial and algebraic solutions and to derive the generating function of Gromov–Witten invariants of the quantum cohomology of the two-dimensional projective space. The procedure is a relevant application of the theory of isomonodromic deformations
2001
4
245
291
http://dx.doi.org/10.1023/A:1012933622521
Guzzetti, Davide
File in questo prodotto:
File Dimensione Formato  
mathphys.pdf

non disponibili

Licenza: Non specificato
Dimensione 298.12 kB
Formato Adobe PDF
298.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/16010
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact