We study the nonequilibrium dynamics in the fermionic Hubbard model after a sudden change of the interaction strength. To this scope, we introduce a time-dependent variational approach in the spirit of the Gutzwiller ansatz. At the saddle-point approximation, we find at half filling a sharp transition between two different regimes of small and large coherent oscillations, separated by a critical line of quenches where the system is found to relax. Any finite doping washes out the transition, leaving aside just a sharp crossover. In order to investigate the role of quantum fluctuations, we map the model onto an auxiliary quantum Ising model in a transverse field coupled to free fermionic quasiparticles. Remarkably, the Gutzwiller approximation turns out to correspond to the mean-field decoupling of this model in the limit of infinite coordination lattices. The advantage is that we can go beyond mean field and include Gaussian fluctuations around the non-equilibrium mean-field dynamics. Unlike at equilibrium, we find that quantum fluctuations become massless and eventually unstable before the mean-field dynamical critical line, which suggests they could even alter qualitatively the mean-field scenario.
Quantum quenches in the Hubbard model: Time-dependent mean-field theory and the role of quantum fluctuations / Schiro, M.; Fabrizio, M.. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 83:16(2011), pp. 1-17. [10.1103/PhysRevB.83.165105]
Quantum quenches in the Hubbard model: Time-dependent mean-field theory and the role of quantum fluctuations
Fabrizio, M.
2011-01-01
Abstract
We study the nonequilibrium dynamics in the fermionic Hubbard model after a sudden change of the interaction strength. To this scope, we introduce a time-dependent variational approach in the spirit of the Gutzwiller ansatz. At the saddle-point approximation, we find at half filling a sharp transition between two different regimes of small and large coherent oscillations, separated by a critical line of quenches where the system is found to relax. Any finite doping washes out the transition, leaving aside just a sharp crossover. In order to investigate the role of quantum fluctuations, we map the model onto an auxiliary quantum Ising model in a transverse field coupled to free fermionic quasiparticles. Remarkably, the Gutzwiller approximation turns out to correspond to the mean-field decoupling of this model in the limit of infinite coordination lattices. The advantage is that we can go beyond mean field and include Gaussian fluctuations around the non-equilibrium mean-field dynamics. Unlike at equilibrium, we find that quantum fluctuations become massless and eventually unstable before the mean-field dynamical critical line, which suggests they could even alter qualitatively the mean-field scenario.File | Dimensione | Formato | |
---|---|---|---|
Marco-PRB-Z2.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
750.34 kB
Formato
Adobe PDF
|
750.34 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1102.1658.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
564.56 kB
Formato
Adobe PDF
|
564.56 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.