Three chimeric proteins were obtained by fusing together the dianthin gene and DNA fragments encoding for the following membrane-acting peptides: the N-terminus of protein G of the vesicular stomatitis virus (KFT25), the N terminus of the HA2 hemagglutinin of influenza virus (pHA2), and a membrane-acting peptide (pJVE). Chimeric dianthins (KFT25DIA, pHA2DIA and pJVEDIA) retained full enzymatic activity in cell-free assays and showed increased ability to induce pH-dependent calcein release from large unilamellar vesicles (LUVs). pHA2DIA and pJVEDIA also showed faster kinetics of interaction with LUVs, while KFT25DIA and pHA2DIA displayed a reduced cytotoxicity as compared to wild-type dianthin. Conjugates made by chemically cross-linking KFT25DIA or pJVEDIA and human transferrin (Tfn) showed greater cell-killing efficiency than conjugates of Tfn and wild-type dianthin. As a consequence, by fusion of membrane-acting peptides to the dianthin sequence the specificity factor (i.e., the ratio between non-specific and specific toxicity) of Tfn-KFT25DIA, Tfn-pHA2DIA and Tfn-pJVEDIA was increased with respect to that of Tfn-based conjugates made with wild-type dianthin. Taken together, our results suggest that genetic fusion of membrane-acting peptides to enzymatic cytotoxins results in the acquisition of new physico-chemical properties exploitable for designing new recombinant cytotoxins and to tackle cell-intoxication mechanisms.

Genetic grafting of membrane-acting peptides to the cytotoxin dianthin augments its ability to de-stabilize lipid bilayers and enhances its cytotoxic potential as the component of transferrin-toxin conjugates / Lorenzetti, I; Meneguzzi, A; Fracasso, G; Potrich, C; Costantini, L; Chiesa, E; Legname, Giuseppe; Menestrina, G; Tridente, G; Colombatti, M.. - In: INTERNATIONAL JOURNAL OF CANCER. - ISSN 0020-7136. - 86:4(2000), pp. 582-589. [10.1002/(SICI)1097-0215(20000515)86:4<582::AID-IJC22>3.0.CO;2-I]

Genetic grafting of membrane-acting peptides to the cytotoxin dianthin augments its ability to de-stabilize lipid bilayers and enhances its cytotoxic potential as the component of transferrin-toxin conjugates

Legname, Giuseppe;
2000-01-01

Abstract

Three chimeric proteins were obtained by fusing together the dianthin gene and DNA fragments encoding for the following membrane-acting peptides: the N-terminus of protein G of the vesicular stomatitis virus (KFT25), the N terminus of the HA2 hemagglutinin of influenza virus (pHA2), and a membrane-acting peptide (pJVE). Chimeric dianthins (KFT25DIA, pHA2DIA and pJVEDIA) retained full enzymatic activity in cell-free assays and showed increased ability to induce pH-dependent calcein release from large unilamellar vesicles (LUVs). pHA2DIA and pJVEDIA also showed faster kinetics of interaction with LUVs, while KFT25DIA and pHA2DIA displayed a reduced cytotoxicity as compared to wild-type dianthin. Conjugates made by chemically cross-linking KFT25DIA or pJVEDIA and human transferrin (Tfn) showed greater cell-killing efficiency than conjugates of Tfn and wild-type dianthin. As a consequence, by fusion of membrane-acting peptides to the dianthin sequence the specificity factor (i.e., the ratio between non-specific and specific toxicity) of Tfn-KFT25DIA, Tfn-pHA2DIA and Tfn-pJVEDIA was increased with respect to that of Tfn-based conjugates made with wild-type dianthin. Taken together, our results suggest that genetic fusion of membrane-acting peptides to enzymatic cytotoxins results in the acquisition of new physico-chemical properties exploitable for designing new recombinant cytotoxins and to tackle cell-intoxication mechanisms.
2000
86
4
582
589
Lorenzetti, I; Meneguzzi, A; Fracasso, G; Potrich, C; Costantini, L; Chiesa, E; Legname, Giuseppe; Menestrina, G; Tridente, G; Colombatti, M.
File in questo prodotto:
File Dimensione Formato  
Lorenzetti_IntJCancer_2000.pdf

non disponibili

Licenza: Non specificato
Dimensione 141.11 kB
Formato Adobe PDF
141.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/16143
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 19
social impact