Retrotransposons are mobile genetic elements that use a germline 'copy-and-paste' mechanism to spread throughout metazoan genomes. At least 50 per cent of the human genome is derived from retrotransposons, with three active families (L1, Alu and SVA) associated with insertional mutagenesis and disease. Epigenetic and post-transcriptional suppression block retrotransposition in somatic cells, excluding early embryo development and some malignancies. Recent reports of L1 expression and copy number variation in the human brain suggest that L1 mobilization may also occur during later development. However, the corresponding integration sites have not been mapped. Here we apply a high-throughput method to identify numerous L1, Alu and SVA germline mutations, as well as 7,743 putative somatic L1 insertions, in the hippocampus and caudate nucleus of three individuals. Surprisingly, we also found 13,692 somatic Alu insertions and 1,350 SVA insertions. Our results demonstrate that retrotransposons mobilize to protein-coding genes differentially expressed and active in the brain. Thus, somatic genome mosaicism driven by retrotransposition may reshape the genetic circuitry that underpins normal and abnormal neurobiological processes.

Somatic retrotransposition alters the genetic landscape of the human brain / Baillie, Jk; Barnett, Mw; Upton, Kr; Gerhardt, Dj; Richmond, Ta; DE SAPIO, F; Brennan, P; Rizzu, P; Smith, S; Fell, M; Talbot, Rt; Gustincich, Stefano; Freeman, Tc; Mattick, Js; Hume, Da; Heutink, P; Carninci, P; Jeddeloh, Ja; Faulkner, Gj. - In: NATURE. - ISSN 0028-0836. - 479:7374(2011), pp. 534-537. [10.1038/nature10531]

Somatic retrotransposition alters the genetic landscape of the human brain

Gustincich, Stefano;
2011-01-01

Abstract

Retrotransposons are mobile genetic elements that use a germline 'copy-and-paste' mechanism to spread throughout metazoan genomes. At least 50 per cent of the human genome is derived from retrotransposons, with three active families (L1, Alu and SVA) associated with insertional mutagenesis and disease. Epigenetic and post-transcriptional suppression block retrotransposition in somatic cells, excluding early embryo development and some malignancies. Recent reports of L1 expression and copy number variation in the human brain suggest that L1 mobilization may also occur during later development. However, the corresponding integration sites have not been mapped. Here we apply a high-throughput method to identify numerous L1, Alu and SVA germline mutations, as well as 7,743 putative somatic L1 insertions, in the hippocampus and caudate nucleus of three individuals. Surprisingly, we also found 13,692 somatic Alu insertions and 1,350 SVA insertions. Our results demonstrate that retrotransposons mobilize to protein-coding genes differentially expressed and active in the brain. Thus, somatic genome mosaicism driven by retrotransposition may reshape the genetic circuitry that underpins normal and abnormal neurobiological processes.
2011
479
7374
534
537
Baillie, Jk; Barnett, Mw; Upton, Kr; Gerhardt, Dj; Richmond, Ta; DE SAPIO, F; Brennan, P; Rizzu, P; Smith, S; Fell, M; Talbot, Rt; Gustincich, Stefano; Freeman, Tc; Mattick, Js; Hume, Da; Heutink, P; Carninci, P; Jeddeloh, Ja; Faulkner, Gj
File in questo prodotto:
File Dimensione Formato  
Baillie 2011 Nature 479 534-7.pdf

non disponibili

Licenza: Non specificato
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/16172
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 535
  • ???jsp.display-item.citation.isi??? 508
social impact