We prove existence of small amplitude, 2π/ω-periodic in time solutions of completely resonant nonlinear wave equations with Dirichlet boundary conditions for any frequency to belonging to a Cantor-like set of positive measure and for a generic set of nonlinearities. The proof relies on a suitable Lyapunov-Schmidt decomposition and a variant of the Nash-Moser Implicit Function Theorem.

Bifurcation of free vibrations for completely resonant wave equations / Berti, M.; Bolle, P.. - In: BOLLETTINO DELL'UNIONE MATEMATICA ITALIANA. B. - ISSN 0392-4041. - 7B:2(2004), pp. 519-528.

Bifurcation of free vibrations for completely resonant wave equations

Berti, M.;
2004-01-01

Abstract

We prove existence of small amplitude, 2π/ω-periodic in time solutions of completely resonant nonlinear wave equations with Dirichlet boundary conditions for any frequency to belonging to a Cantor-like set of positive measure and for a generic set of nonlinearities. The proof relies on a suitable Lyapunov-Schmidt decomposition and a variant of the Nash-Moser Implicit Function Theorem.
2004
7B
2
519
528
http://www.bdim.eu/item?id=BUMI_2004_8_7B_2_519_0
https://arxiv.org/abs/math/0409052
Berti, M.; Bolle, P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/16211
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact