The aim of this note is to show that Alexandrov solutions of the Monge-Ampere equation, with right hand side bounded away from zero and infinity, converge strongly in W2,1loc if their right hand side converge strongly in L1loc. As a corollary we deduce strong W1,1loc stability of optimal transport maps.
Second order stability for the Monge-Ampere equation and strong Sobolev convergence of Optimal Transport Maps
De Philippis, Guido;
2013-01-01
Abstract
The aim of this note is to show that Alexandrov solutions of the Monge-Ampere equation, with right hand side bounded away from zero and infinity, converge strongly in W2,1loc if their right hand side converge strongly in L1loc. As a corollary we deduce strong W1,1loc stability of optimal transport maps.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2013_Second Order Stability For The Monge?Ampe?re Equation And Strong Sobolev Convergence Of Optimal Transport Maps.pdf
Open Access dal 02/01/2018
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
990.25 kB
Formato
Adobe PDF
|
990.25 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.