The aim of this note is to show that Alexandrov solutions of the Monge-Ampere equation, with right hand side bounded away from zero and infinity, converge strongly in W2,1loc if their right hand side converge strongly in L1loc. As a corollary we deduce strong W1,1loc stability of optimal transport maps.

Second order stability for the Monge-Ampere equation and strong Sobolev convergence of Optimal Transport Maps

De Philippis, Guido;
2013-01-01

Abstract

The aim of this note is to show that Alexandrov solutions of the Monge-Ampere equation, with right hand side bounded away from zero and infinity, converge strongly in W2,1loc if their right hand side converge strongly in L1loc. As a corollary we deduce strong W1,1loc stability of optimal transport maps.
2013
6
4
993
1000
https://arxiv.org/abs/1202.5561
De Philippis, Guido; Figalli, A.
File in questo prodotto:
File Dimensione Formato  
2013_Second Order Stability For The Monge?Ampe?re Equation And Strong Sobolev Convergence Of Optimal Transport Maps.pdf

Open Access dal 02/01/2018

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 990.25 kB
Formato Adobe PDF
990.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/16299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 17
social impact