Excursion set theory, where density perturbations evolve stochastically with the smoothing scale, provides a method for computing the mass function of cosmological structures like dark matter haloes, sheets and filaments. The computation of these mass functions is mapped into the so-called first-passage time problem in the presence of a moving barrier. In this paper we use the path-integral formulation of the excursion set theory developed recently to analytically solve the first-passage time problem in the presence of a generic moving barrier, in particular the barrier corresponding to ellipsoidal collapse. We perform the computation for both Gaussian and non-Gaussian initial conditions and for a window function which is a top-hat in wavenumber space. The expression of the halo mass function for the ellipsoidal collapse barrier and with non-Gaussianity is therefore obtained in a fully consistent way and it does not require the introduction of any form factor artificially derived from the Press-Schechter formalism based on the spherical collapse and usually adopted in the literature.
Excursion set theory for generic moving barriers and non-Gaussian initial conditions
De Simone, Andrea;
2011-01-01
Abstract
Excursion set theory, where density perturbations evolve stochastically with the smoothing scale, provides a method for computing the mass function of cosmological structures like dark matter haloes, sheets and filaments. The computation of these mass functions is mapped into the so-called first-passage time problem in the presence of a moving barrier. In this paper we use the path-integral formulation of the excursion set theory developed recently to analytically solve the first-passage time problem in the presence of a generic moving barrier, in particular the barrier corresponding to ellipsoidal collapse. We perform the computation for both Gaussian and non-Gaussian initial conditions and for a window function which is a top-hat in wavenumber space. The expression of the halo mass function for the ellipsoidal collapse barrier and with non-Gaussianity is therefore obtained in a fully consistent way and it does not require the introduction of any form factor artificially derived from the Press-Schechter formalism based on the spherical collapse and usually adopted in the literature.File | Dimensione | Formato | |
---|---|---|---|
MovingBarriers.pdf
non disponibili
Licenza:
Non specificato
Dimensione
452.79 kB
Formato
Adobe PDF
|
452.79 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.