Excursion set theory, where density perturbations evolve stochastically with the smoothing scale, provides a method for computing the mass function of cosmological structures like dark matter haloes, sheets and filaments. The computation of these mass functions is mapped into the so-called first-passage time problem in the presence of a moving barrier. In this paper we use the path-integral formulation of the excursion set theory developed recently to analytically solve the first-passage time problem in the presence of a generic moving barrier, in particular the barrier corresponding to ellipsoidal collapse. We perform the computation for both Gaussian and non-Gaussian initial conditions and for a window function which is a top-hat in wavenumber space. The expression of the halo mass function for the ellipsoidal collapse barrier and with non-Gaussianity is therefore obtained in a fully consistent way and it does not require the introduction of any form factor artificially derived from the Press-Schechter formalism based on the spherical collapse and usually adopted in the literature.

Excursion set theory for generic moving barriers and non-Gaussian initial conditions

De Simone, Andrea;
2011

Abstract

Excursion set theory, where density perturbations evolve stochastically with the smoothing scale, provides a method for computing the mass function of cosmological structures like dark matter haloes, sheets and filaments. The computation of these mass functions is mapped into the so-called first-passage time problem in the presence of a moving barrier. In this paper we use the path-integral formulation of the excursion set theory developed recently to analytically solve the first-passage time problem in the presence of a generic moving barrier, in particular the barrier corresponding to ellipsoidal collapse. We perform the computation for both Gaussian and non-Gaussian initial conditions and for a window function which is a top-hat in wavenumber space. The expression of the halo mass function for the ellipsoidal collapse barrier and with non-Gaussianity is therefore obtained in a fully consistent way and it does not require the introduction of any form factor artificially derived from the Press-Schechter formalism based on the spherical collapse and usually adopted in the literature.
412
4
2587
2602
De Simone, Andrea; Maggiore, M; Riotto, A.
File in questo prodotto:
File Dimensione Formato  
MovingBarriers.pdf

non disponibili

Licenza: Non specificato
Dimensione 452.79 kB
Formato Adobe PDF
452.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/16474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 35
social impact