We present a large set of theoretical isochrones, whose distinctive features mostly reside on the greatly-improved treatment of the thermally-pulsing asymptotic giant branch (TP-AGB) phase. Essentially, we have coupled the TP-AGB tracks described in Paper I, at their stages of pre-flash quiescent H-shell burning, with the evolutionary tracks for the previous evolutionary phases from Girardi et al. (2000, A&AS, 141, 371). Theoretical isochrones for any intermediate value of age and metallicity are then derived by interpolation in the grids. We take care that the isochrones keep, to a good level of detail, the several peculiarities present in these TP-AGB tracks - e.g., the cool tails of C-type stars owing to the use of proper molecular opacities as convective dredge-up occurs along the TP-AGB; the bell-shaped sequences in the Hertzsprung-Russell (HR) diagram for stars with hot-bottom burning; the changes of pulsation mode between fundamental and first overtone; the sudden changes of mean mass-loss rates as the surface chemistry changes from M- to C-type; etc. Theoretical isochrones are then converted to about 20 different photometric systems - including traditional ground-based systems, and those of recent major wide-field surveys such as SDSS, OGLE, DENIS, 2MASS, UKIDSS, etc., - by means of synthetic photometry applied to an updated library of stellar spectra, suitably extended to include C-type stars. Finally, we correct the predicted photometry for the effect of circumstellar dust during the mass-losing stages of the AGB evolution, which allows us to improve the results for the optical-to-infrared systems, and to simulate mid- and far-IR systems such as those of Spitzer and AKARI. We illustrate the most striking properties of these isochrones by means of basic comparisons with observational data for the Milky Way disc and the Magellanic Clouds.

Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP-AGB models / Marigo, P.; Girardi, L.; Bressan, Alessandro; Groenewegen, M. A. T.; Silva, L.; Granato, G. L.. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 482:3(2008), pp. 883-905. [10.1051/0004-6361:20078467]

Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP-AGB models

Bressan, Alessandro;
2008-01-01

Abstract

We present a large set of theoretical isochrones, whose distinctive features mostly reside on the greatly-improved treatment of the thermally-pulsing asymptotic giant branch (TP-AGB) phase. Essentially, we have coupled the TP-AGB tracks described in Paper I, at their stages of pre-flash quiescent H-shell burning, with the evolutionary tracks for the previous evolutionary phases from Girardi et al. (2000, A&AS, 141, 371). Theoretical isochrones for any intermediate value of age and metallicity are then derived by interpolation in the grids. We take care that the isochrones keep, to a good level of detail, the several peculiarities present in these TP-AGB tracks - e.g., the cool tails of C-type stars owing to the use of proper molecular opacities as convective dredge-up occurs along the TP-AGB; the bell-shaped sequences in the Hertzsprung-Russell (HR) diagram for stars with hot-bottom burning; the changes of pulsation mode between fundamental and first overtone; the sudden changes of mean mass-loss rates as the surface chemistry changes from M- to C-type; etc. Theoretical isochrones are then converted to about 20 different photometric systems - including traditional ground-based systems, and those of recent major wide-field surveys such as SDSS, OGLE, DENIS, 2MASS, UKIDSS, etc., - by means of synthetic photometry applied to an updated library of stellar spectra, suitably extended to include C-type stars. Finally, we correct the predicted photometry for the effect of circumstellar dust during the mass-losing stages of the AGB evolution, which allows us to improve the results for the optical-to-infrared systems, and to simulate mid- and far-IR systems such as those of Spitzer and AKARI. We illustrate the most striking properties of these isochrones by means of basic comparisons with observational data for the Milky Way disc and the Magellanic Clouds.
2008
482
3
883
905
https://arxiv.org/abs/0711.4922
Marigo, P.; Girardi, L.; Bressan, Alessandro; Groenewegen, M. A. T.; Silva, L.; Granato, G. L.
File in questo prodotto:
File Dimensione Formato  
A&A.482.883.905.2008.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 5.13 MB
Formato Adobe PDF
5.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/16512
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1279
  • ???jsp.display-item.citation.isi??? 1301
social impact