In this paper we find a class of solutions of the sixth Painlevé equation appearing in the theory of WDVV equations. This class covers almost all the monodromy data associated to the equation, except one point in the space of the data. We describe the critical behavior close to the critical points in terms of two parameters and we find the relation among the parameters at the different critical points (connection problem). We also study the critical behavior of Painlevé transcendents in the elliptic representation.
On the Critical Behavior, the Connection Problem and the Elliptic Representation of a Painleve’ 6 Equation
Guzzetti, Davide
2001-01-01
Abstract
In this paper we find a class of solutions of the sixth Painlevé equation appearing in the theory of WDVV equations. This class covers almost all the monodromy data associated to the equation, except one point in the space of the data. We describe the critical behavior close to the critical points in terms of two parameters and we find the relation among the parameters at the different critical points (connection problem). We also study the critical behavior of Painlevé transcendents in the elliptic representation.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
mathphys.pdf
non disponibili
Licenza:
Non specificato
Dimensione
597.98 kB
Formato
Adobe PDF
|
597.98 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.