In this paper we find a class of solutions of the sixth Painlevé equation appearing in the theory of WDVV equations. This class covers almost all the monodromy data associated to the equation, except one point in the space of the data. We describe the critical behavior close to the critical points in terms of two parameters and we find the relation among the parameters at the different critical points (connection problem). We also study the critical behavior of Painlevé transcendents in the elliptic representation.

On the Critical Behavior, the Connection Problem and the Elliptic Representation of a Painleve’ 6 Equation

Guzzetti, Davide
2001-01-01

Abstract

In this paper we find a class of solutions of the sixth Painlevé equation appearing in the theory of WDVV equations. This class covers almost all the monodromy data associated to the equation, except one point in the space of the data. We describe the critical behavior close to the critical points in terms of two parameters and we find the relation among the parameters at the different critical points (connection problem). We also study the critical behavior of Painlevé transcendents in the elliptic representation.
2001
4
293
377
http://dx.doi.org/10.1023/A:1014265919008
Guzzetti, Davide
File in questo prodotto:
File Dimensione Formato  
mathphys.pdf

non disponibili

Licenza: Non specificato
Dimensione 597.98 kB
Formato Adobe PDF
597.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/16559
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact