We consider two-dimensional percolation in the scaling limit close to criticality and use integrable field theory to obtain universal predictions for the probability that at least one cluster crosses between opposite sides of a rectangle of sides much larger than the correlation length and for the mean number of such crossing clusters.

Crossing probability and number of crossing clusters in off-critical percolation

Delfino, Gesualdo;
2012-01-01

Abstract

We consider two-dimensional percolation in the scaling limit close to criticality and use integrable field theory to obtain universal predictions for the probability that at least one cluster crosses between opposite sides of a rectangle of sides much larger than the correlation length and for the mean number of such crossing clusters.
2012
45
32005
32016
Delfino, Gesualdo; Viti, J.
File in questo prodotto:
File Dimensione Formato  
crossing.pdf

non disponibili

Licenza: Non specificato
Dimensione 342.28 kB
Formato Adobe PDF
342.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/16617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact