We present a general scheme for the computation of the time-dependent (TD) quadratic susceptibility (chi((2))) of an extended insulator obtained by applying the ''2n + 1'' theorem to the action functional as defined in TD density-functional theory. The resulting expression for chi((2)) includes self-consistent local-field effects, and is a simple function of the linear response of the system. We compute the static chi((2)) of nine III-V and five II-VI semiconductors using the local density approximation (LDA), obtaining good agreement with experiment. For GaP we also evaluate the TD chi((2)) for second-harmonic generation using TD-LDA.

Density-functional theory of the nonlinear optical susceptibility: Application to cubic semiconductors

Dal Corso, Andrea;
1996-01-01

Abstract

We present a general scheme for the computation of the time-dependent (TD) quadratic susceptibility (chi((2))) of an extended insulator obtained by applying the ''2n + 1'' theorem to the action functional as defined in TD density-functional theory. The resulting expression for chi((2)) includes self-consistent local-field effects, and is a simple function of the linear response of the system. We compute the static chi((2)) of nine III-V and five II-VI semiconductors using the local density approximation (LDA), obtaining good agreement with experiment. For GaP we also evaluate the TD chi((2)) for second-harmonic generation using TD-LDA.
1996
53
23
15638
15642
http://link.aps.org/doi/10.1103/PhysRevB.53.15638
Dal Corso, Andrea; Mauri, F; Rubio, A.
File in questo prodotto:
File Dimensione Formato  
PhysRevB.53.15638.1996.pdf

non disponibili

Licenza: Non specificato
Dimensione 124.14 kB
Formato Adobe PDF
124.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/16731
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 116
  • ???jsp.display-item.citation.isi??? 101
social impact