Here, we show, using single-cell electrophysiology techniques, electron microscopy analysis and theoretical modelling, that nanotubes improve the responsiveness of neurons by forming tight contacts with the cell membranes that might favour electrical shortcuts between the proximal and distal compartments of the neuron. We propose the ‘electrotonic hypothesis’ to explain the physical interactions between the cell and nanotube, and the mechanisms of how carbon nanotubes might affect the collective electrical activity of cultured neuronal networks.
Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts / Cellot, G.; Cilia, E.; Cipollone, S.; Rancic, V.; Sucapane, A.; Giordani, S.; Gambazzi, L.; Markram, H.; Grandolfo, M.; Scaini, D.; Gelain, F.; Casalis, L.; Prato, M.; Giugliano, M.; Ballerini, L.. - In: NATURE NANOTECHNOLOGY. - ISSN 1748-3387. - 4:2(2009), pp. 126-133. [10.1038/NNANO.2008.374]
Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts
Cellot, G.;Rancic, V.;Grandolfo, M.;Scaini, D.;Giugliano, M.;Ballerini, L.
2009-01-01
Abstract
Here, we show, using single-cell electrophysiology techniques, electron microscopy analysis and theoretical modelling, that nanotubes improve the responsiveness of neurons by forming tight contacts with the cell membranes that might favour electrical shortcuts between the proximal and distal compartments of the neuron. We propose the ‘electrotonic hypothesis’ to explain the physical interactions between the cell and nanotube, and the mechanisms of how carbon nanotubes might affect the collective electrical activity of cultured neuronal networks.File | Dimensione | Formato | |
---|---|---|---|
Carbon nanotubes might improve neuronal.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
675.08 kB
Formato
Adobe PDF
|
675.08 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.