We present new existence and regularity results of periodic in time solutions of completely resonant nonlinear forced wave equations with Dirichlet boundary conditions for a large class of non-monotone forcing terms. Our approach is based on a variational Lyapunov– Schmidt reduction. The infinite dimensional bifurcation equation exhibits an intrinsic lack of compactness.We solve it via a minimization argument and a-priori estimate methods related to the regularity theory of Rabinowitz.

Periodic solutions of nonlinear wave equations with non-monotone forcing terms / Berti, Massimiliano; Biasco, Luca. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 16:2(2005), pp. 117-124.

Periodic solutions of nonlinear wave equations with non-monotone forcing terms

Berti, Massimiliano;
2005-01-01

Abstract

We present new existence and regularity results of periodic in time solutions of completely resonant nonlinear forced wave equations with Dirichlet boundary conditions for a large class of non-monotone forcing terms. Our approach is based on a variational Lyapunov– Schmidt reduction. The infinite dimensional bifurcation equation exhibits an intrinsic lack of compactness.We solve it via a minimization argument and a-priori estimate methods related to the regularity theory of Rabinowitz.
2005
16
2
117
124
http://www.bdim.eu/item?id=RLIN_2005_9_16_2_117_0
Berti, Massimiliano; Biasco, Luca
File in questo prodotto:
File Dimensione Formato  
RLIN_2005_9_16_2_117_0.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 250.83 kB
Formato Adobe PDF
250.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/16856
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact