We consider a nearly integrable, non-isochronous, a-priori unstable Hamiltonian system with a (trigonometric polynomial) O(μ)-perturbation which does not preserve the unperturbed tori. We prove the existence of Arnold diffusion with diffusion time Td=O((1/μ)log(1/μ)) by a variational method which does not require the existence of ``transition chains of tori'' provided by KAM theory. We also prove that our estimate of the diffusion time Td is optimal as a consequence of a general stability result proved via classical perturbation theory.
Optimal stability and instability results for a class of nearly integrable Hamiltonian systems / Berti, Massimiliano; Biasco, L.; Bolle, P.. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 13:2(2002), pp. 77-84.
Optimal stability and instability results for a class of nearly integrable Hamiltonian systems
Berti, Massimiliano;
2002-01-01
Abstract
We consider a nearly integrable, non-isochronous, a-priori unstable Hamiltonian system with a (trigonometric polynomial) O(μ)-perturbation which does not preserve the unperturbed tori. We prove the existence of Arnold diffusion with diffusion time Td=O((1/μ)log(1/μ)) by a variational method which does not require the existence of ``transition chains of tori'' provided by KAM theory. We also prove that our estimate of the diffusion time Td is optimal as a consequence of a general stability result proved via classical perturbation theory.File | Dimensione | Formato | |
---|---|---|---|
RLIN_2002_9_13_2_77_0.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
346.11 kB
Formato
Adobe PDF
|
346.11 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.