The authors derive the modulation equations for the one-phase periodic solution of the Camassa-Holm (CH) equation by using a Lagrangian formalism. Following the method of Haynes and Whitham, the modulation equations are shown to be Hamiltonian with a local Poisson bracket of Dubrovin-Novikov type. Subsequently, the modulation equations are rewritten in Riemann-invariant form and are shown to be hyperbolic. The authors then investigate the bi-Hamiltonian structure and the integration of the one-phase Whitham equations in Riemann-invariant form. Finally, in the last section, the authors show that the modulation equations of the CH equation are transformed to the modulation equations of the first negative KdV flow by the average of the reciprocal transformation which links the two equations.

Modulation of Camassa-Holm equation and reciprocal transformations

Grava, Tamara
2005-01-01

Abstract

The authors derive the modulation equations for the one-phase periodic solution of the Camassa-Holm (CH) equation by using a Lagrangian formalism. Following the method of Haynes and Whitham, the modulation equations are shown to be Hamiltonian with a local Poisson bracket of Dubrovin-Novikov type. Subsequently, the modulation equations are rewritten in Riemann-invariant form and are shown to be hyperbolic. The authors then investigate the bi-Hamiltonian structure and the integration of the one-phase Whitham equations in Riemann-invariant form. Finally, in the last section, the authors show that the modulation equations of the CH equation are transformed to the modulation equations of the first negative KdV flow by the average of the reciprocal transformation which links the two equations.
2005
55
6
1803
1834
Abenda, S; Grava, Tamara
File in questo prodotto:
File Dimensione Formato  
AbendaGrava2004.pdf

non disponibili

Licenza: Non specificato
Dimensione 637.29 kB
Formato Adobe PDF
637.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/16895
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 16
social impact