We introduce a model of long-range interacting particles evolving under a stochastic Monte Carlo dynamics, in which possible increase or decrease in the values of the dynamical variables is accepted with preassigned probabilities. For symmetric increments, the system at long times settles to the Gibbs equilibrium state, while for asymmetric updates, the steady state is out of equilibrium. For the associated Fokker-Planck dynamics in the thermodynamic limit, we compute exactly the phase space distribution in the nonequilibrium steady state, and find that it has a nontrivial form that reduces to the familiar Gibbsian measure in the equilibrium limit.

A stochastic model of long-range interacting particles / Gupta, Shamik; Dauxois, Thierry; Ruffo, Stefano. - In: JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. - ISSN 1742-5468. - 2013:11(2013), pp. P11003-1-P11003-1. [10.1088/1742-5468/2013/11/P11003]

A stochastic model of long-range interacting particles

Ruffo, Stefano
2013-01-01

Abstract

We introduce a model of long-range interacting particles evolving under a stochastic Monte Carlo dynamics, in which possible increase or decrease in the values of the dynamical variables is accepted with preassigned probabilities. For symmetric increments, the system at long times settles to the Gibbs equilibrium state, while for asymmetric updates, the steady state is out of equilibrium. For the associated Fokker-Planck dynamics in the thermodynamic limit, we compute exactly the phase space distribution in the nonequilibrium steady state, and find that it has a nontrivial form that reduces to the familiar Gibbsian measure in the equilibrium limit.
2013
2013
11
P11003-1
P11003-1
P11003
http://iopscience.iop.org/1742-5468/2013/11/P11003/
https://arxiv.org/abs/1309.2122
Gupta, Shamik; Dauxois, Thierry; Ruffo, Stefano
File in questo prodotto:
File Dimensione Formato  
Stochastic-LR-JStat.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 314.49 kB
Formato Adobe PDF
314.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/16915
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact