Using the concept of the Boolean derivative we study local damage spreading for one-dimensional elementary cellular automata and define their maximal Lyapunov exponent. A random matrix approximation describes quite well the behavior of “chaotic” cellular automata and predicts a directed percolation-type phase transition. After the introduction of a small amount of noise elementary cellular automata reveal the same type of transition.

Damage spreading and Lyapunov exponents in cellular automata

Ruffo, Stefano
1992-01-01

Abstract

Using the concept of the Boolean derivative we study local damage spreading for one-dimensional elementary cellular automata and define their maximal Lyapunov exponent. A random matrix approximation describes quite well the behavior of “chaotic” cellular automata and predicts a directed percolation-type phase transition. After the introduction of a small amount of noise elementary cellular automata reveal the same type of transition.
1992
172
34
38
http://www.sciencedirect.com/science/article/pii/037596019290185O
F., Bagnoli; R., Rechtman; Ruffo, Stefano
File in questo prodotto:
File Dimensione Formato  
BagnoliRechtmanRuffo-DamageSpreadingLyapunovExponentsCA-PhysLettA172.pdf

non disponibili

Licenza: Non specificato
Dimensione 617.17 kB
Formato Adobe PDF
617.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/16960
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 67
social impact