BACKGROUND: α-Synuclein (α-syn) plays a central role in the pathogenesis of synucleinopathies, a group of neurodegenerative disorders that includes Parkinson disease, dementia with Lewy bodies and multiple system atrophy. Several findings from cell culture and mouse experiments suggest intercellular α-syn transfer. RESULTS: Through a methodology used to obtain synthetic mammalian prions, we tested whether recombinant human α-syn amyloids can promote prion-like accumulation in neuronal cell lines in vitro. A single exposure to amyloid fibrils of human α-syn was sufficient to induce aggregation of endogenous α-syn in human neuroblastoma SH-SY5Y cells. Remarkably, endogenous wild-type α-syn was sufficient for the formation of these aggregates, and overexpression of the protein was not required. CONCLUSIONS: Our results provide compelling evidence that endogenous α-syn can accumulate in cell culture after a single exposure to exogenous α-syn short amyloid fibrils. Importantly, using α-syn short amyloid fibrils as seed, endogenous α-syn aggregates and accumulates over several passages in cell culture, providing an excellent tool for potential therapeutic screening of pathogenic α-syn aggregates.

Defined α-synuclein prion-like molecular assemblies spreading in cell culture

Aulic, Suzana;Gustincich, Stefano;Legname, Giuseppe
2014-01-01

Abstract

BACKGROUND: α-Synuclein (α-syn) plays a central role in the pathogenesis of synucleinopathies, a group of neurodegenerative disorders that includes Parkinson disease, dementia with Lewy bodies and multiple system atrophy. Several findings from cell culture and mouse experiments suggest intercellular α-syn transfer. RESULTS: Through a methodology used to obtain synthetic mammalian prions, we tested whether recombinant human α-syn amyloids can promote prion-like accumulation in neuronal cell lines in vitro. A single exposure to amyloid fibrils of human α-syn was sufficient to induce aggregation of endogenous α-syn in human neuroblastoma SH-SY5Y cells. Remarkably, endogenous wild-type α-syn was sufficient for the formation of these aggregates, and overexpression of the protein was not required. CONCLUSIONS: Our results provide compelling evidence that endogenous α-syn can accumulate in cell culture after a single exposure to exogenous α-syn short amyloid fibrils. Importantly, using α-syn short amyloid fibrils as seed, endogenous α-syn aggregates and accumulates over several passages in cell culture, providing an excellent tool for potential therapeutic screening of pathogenic α-syn aggregates.
2014
15
1
1
12
69
10.1186/1471-2202-15-69
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064824/
Aulic, Suzana; Le, T. T.; Moda, F.; Abounit, S.; Corvaglia, S.; Casalis, L.; Gustincich, Stefano; Zurzolo, C.; Tagliavini, F.; Legname, Giuseppe...espandi
File in questo prodotto:
File Dimensione Formato  
Aulic 2014 BMC Neurosci 15 69.pdf

accesso aperto

Descrizione: Open Access article
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.87 MB
Formato Adobe PDF
2.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/16968
Citazioni
  • ???jsp.display-item.citation.pmc??? 34
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 64
social impact