We study some qualitative properties of the integro-extremal minimizers of the functional of the gradient defined on Sobolev spaces with Dirichlet boundary conditions. We discuss their use in the non-convex case via viscosity methods and give conditions under which they are unique and depend continuously on boundary data.

Uniqueness and continuous dependence on boundary data for integro-extremal minimizers of the functional of the gradient / Zagatti, Sandro. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - 14:4(2007), pp. 705-727.

Uniqueness and continuous dependence on boundary data for integro-extremal minimizers of the functional of the gradient

Zagatti, Sandro
2007-01-01

Abstract

We study some qualitative properties of the integro-extremal minimizers of the functional of the gradient defined on Sobolev spaces with Dirichlet boundary conditions. We discuss their use in the non-convex case via viscosity methods and give conditions under which they are unique and depend continuously on boundary data.
2007
14
4
705
727
http://www.heldermann.de/JCA/JCA14/JCA144/jca14042.htm
Zagatti, Sandro
File in questo prodotto:
File Dimensione Formato  
jca1.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 186.53 kB
Formato Adobe PDF
186.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/17170
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact