We study some qualitative properties of the integro-extremal minimizers of the functional of the gradient defined on Sobolev spaces with Dirichlet boundary conditions. We discuss their use in the non-convex case via viscosity methods and give conditions under which they are unique and depend continuously on boundary data.
Uniqueness and continuous dependence on boundary data for integro-extremal minimizers of the functional of the gradient / Zagatti, Sandro. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - 14:4(2007), pp. 705-727.
Uniqueness and continuous dependence on boundary data for integro-extremal minimizers of the functional of the gradient
Zagatti, Sandro
2007-01-01
Abstract
We study some qualitative properties of the integro-extremal minimizers of the functional of the gradient defined on Sobolev spaces with Dirichlet boundary conditions. We discuss their use in the non-convex case via viscosity methods and give conditions under which they are unique and depend continuously on boundary data.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
jca1.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
186.53 kB
Formato
Adobe PDF
|
186.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.