We use a relative Fourier-Mukai transform on elliptic K3 surfaces X to describe mirror symmetry. The action of this Fourier-Mukai transform on the cohomology ring of X reproduces relative T-duality and provides an infinitesimal isometry of the moduli space of algebraic structures on X which, in view of the triviality of the quantum cohomology of K3 surfaces, can be interpreted as mirror symmetry. From the mathematical viewpoint the novelty is that we exhibit another example of a Fourier-Mukai transform on K3 surfaces, whose properties are closely related to the geometry of the relative Jacobian of X.
Mirror symmetry on K3 surfaces via Fourier-Mukai transform / Bartocci, C.; Bruzzo, U.; Hernandez-Ruiperez, D.; Munoz Porras, J. M.. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 195:1(1998), pp. 79-93.
Titolo: | Mirror symmetry on K3 surfaces via Fourier-Mukai transform |
Autori: | Bartocci, C.; Bruzzo, U.; Hernandez-Ruiperez, D.; Munoz Porras, J. M. |
Rivista: | |
Data di pubblicazione: | 1998 |
Volume: | 195 |
Fascicolo: | 1 |
Pagina iniziale: | 79 |
Pagina finale: | 93 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s002200050380 |
URL: | https://arxiv.org/abs/alg-geom/9704023 |
Appare nelle tipologie: | 1.1 Journal article |