We revisit Lyman-alpha bounds on the dark matter mass in Lambda Warm Dark Matter (Lambda-WDM) models, and derive new bounds in the case of mixed Cold plus Warm models (Lambda-CWDM), using a set up which is a good approximation for several theoretically well-motivated dark matter models. We combine WMAP5 results with two different Lyman-alpha data sets, including observations from the Sloan Digital Sky Survey. We pay a special attention to systematics, test various possible sources of error, and compare the results of different statistical approaches. Expressed in terms of the mass of a non-resonantly produced sterile neutrino, our bounds read m_NRP > 8 keV (frequentist 99.7% confidence limit) or m_NRP > 12.1 keV (Bayesian 95% credible interval) in the pure Lambda-WDM limit. For the mixed model, we obtain limits on the mass as a function of the warm dark matter fraction F_WDM. Within the mass range studied here (5 keV < m_NRP < infinity), we find that any mass value is allowed when F_WDM < 0.6 (frequentist 99.7% confidence limit); similarly, the Bayesian joint probability on (F_WDM, 1/m_NRP) allows any value of the mass at the 95% confidence level, provided that F_WDM < 0.35.
Lyman-α constraints on warm and on warm-plus-cold dark matter models / Boyarsky, A; Lesgourgues, J; Ruchayskiy, O; Viel, M. - In: JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS. - ISSN 1475-7516. - 2009:5(2009), pp. 1-42. [10.1088/1475-7516/2009/05/012]
Lyman-α constraints on warm and on warm-plus-cold dark matter models
Viel, M
2009-01-01
Abstract
We revisit Lyman-alpha bounds on the dark matter mass in Lambda Warm Dark Matter (Lambda-WDM) models, and derive new bounds in the case of mixed Cold plus Warm models (Lambda-CWDM), using a set up which is a good approximation for several theoretically well-motivated dark matter models. We combine WMAP5 results with two different Lyman-alpha data sets, including observations from the Sloan Digital Sky Survey. We pay a special attention to systematics, test various possible sources of error, and compare the results of different statistical approaches. Expressed in terms of the mass of a non-resonantly produced sterile neutrino, our bounds read m_NRP > 8 keV (frequentist 99.7% confidence limit) or m_NRP > 12.1 keV (Bayesian 95% credible interval) in the pure Lambda-WDM limit. For the mixed model, we obtain limits on the mass as a function of the warm dark matter fraction F_WDM. Within the mass range studied here (5 keV < m_NRP < infinity), we find that any mass value is allowed when F_WDM < 0.6 (frequentist 99.7% confidence limit); similarly, the Bayesian joint probability on (F_WDM, 1/m_NRP) allows any value of the mass at the 95% confidence level, provided that F_WDM < 0.35.File | Dimensione | Formato | |
---|---|---|---|
Alexey_Boyarsky_2009_J._Cosmol._Astropart._Phys._2009_012.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.