We consider the problem of Arnold’s diffusion for nearly integrable isochronous Hamiltonian systems. We prove a shadowing theorem which improves the known estimates for the diffusion time. We also justify for three time scales systems that the splitting of the separatrices is correctly predicted by the Poincar ́e-Melnikov function.

Diffusion time and splitting of the separatrices in nearly integrable isochronous Hamiltonian systems / Berti, M.; Bolle, P.. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 11:4(2000), pp. 235-243.

Diffusion time and splitting of the separatrices in nearly integrable isochronous Hamiltonian systems

Berti, M.;
2000-01-01

Abstract

We consider the problem of Arnold’s diffusion for nearly integrable isochronous Hamiltonian systems. We prove a shadowing theorem which improves the known estimates for the diffusion time. We also justify for three time scales systems that the splitting of the separatrices is correctly predicted by the Poincar ́e-Melnikov function.
2000
11
4
235
243
Berti, M.; Bolle, P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/17284
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact