Motivated by string-theoretic arguments Manschot, Pioline and Sen discovered a new remarkable formula for the Poincare polynomial of a smooth compact moduli space of stable quiver representations which effectively reduces to the abelian case (i.e. thin dimension vectors). We first prove a motivic generalization of this formula, valid for arbitrary quivers, dimension vectors and stabilities. In the case of complete bipartite quivers we use the refined GW/Kronecker correspondence between Euler characteristics of quiver moduli and Gromov-Witten invariants to identify the MPS formula for Euler characteristics with a standard degeneration formula in Gromov-Witten theory. Finally we combine the MPS formula with localization techniques, obtaining a new formula for quiver Euler characteristics as a sum over trees, and constructing many examples of explicit correspondences between quiver representations and tropical curves.
MPS degeneration formula for quiver moduli and refined GW/Kronecker correspondence / Reineke, M.; Stoppa, Jacopo; Thorsten, W.. - In: GEOMETRY & TOPOLOGY. - ISSN 1465-3060. - 16:4(2012), pp. 2097-2134. [10.2140/gt.2012.16.2097]
MPS degeneration formula for quiver moduli and refined GW/Kronecker correspondence
Stoppa, Jacopo;
2012-01-01
Abstract
Motivated by string-theoretic arguments Manschot, Pioline and Sen discovered a new remarkable formula for the Poincare polynomial of a smooth compact moduli space of stable quiver representations which effectively reduces to the abelian case (i.e. thin dimension vectors). We first prove a motivic generalization of this formula, valid for arbitrary quivers, dimension vectors and stabilities. In the case of complete bipartite quivers we use the refined GW/Kronecker correspondence between Euler characteristics of quiver moduli and Gromov-Witten invariants to identify the MPS formula for Euler characteristics with a standard degeneration formula in Gromov-Witten theory. Finally we combine the MPS formula with localization techniques, obtaining a new formula for quiver Euler characteristics as a sum over trees, and constructing many examples of explicit correspondences between quiver representations and tropical curves.File | Dimensione | Formato | |
---|---|---|---|
gt-2012-16-045s.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
388.39 kB
Formato
Adobe PDF
|
388.39 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.