Astrophysical fluids may acquire nonzero electrical charge because of strong irradiation or charge separation in a magnetic field. In this case, electromagnetic and gravitational forces may act together and produce new equilibrium configurations, which are different from the uncharged ones. Following our previous studies of charged test particles and uncharged perfect fluid tori encircling compact objects, we introduce here a simple test model of a charged perfect fluid torus in strong gravitational and electromagnetic fields. In contrast to ideal magnetohydrodynamic models, we consider here the opposite limit of negligible conductivity, where the charges are tied completely to the moving matter. This is an extreme limiting case which can provide a useful reference against which to compare subsequent more complicated astrophysically motivated calculations. To clearly demonstrate the features of our model, we construct three-dimensional axisymmetric charged toroidal configurations around Reissner-Nordstrom black holes and compare them with equivalent configurations of electrically neutral tori.

Role of electric charge in shaping equilibrium configurations of fluid tori encircling black holes / Kovar, J; Slany, P; Stuchlik, Z; Karas, V; Cremaschini, C; Miller, John. - In: PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. - ISSN 1550-7998. - 84:8(2011), pp. 1-14. [10.1103/PhysRevD.84.084002]

Role of electric charge in shaping equilibrium configurations of fluid tori encircling black holes

Miller, John
2011-01-01

Abstract

Astrophysical fluids may acquire nonzero electrical charge because of strong irradiation or charge separation in a magnetic field. In this case, electromagnetic and gravitational forces may act together and produce new equilibrium configurations, which are different from the uncharged ones. Following our previous studies of charged test particles and uncharged perfect fluid tori encircling compact objects, we introduce here a simple test model of a charged perfect fluid torus in strong gravitational and electromagnetic fields. In contrast to ideal magnetohydrodynamic models, we consider here the opposite limit of negligible conductivity, where the charges are tied completely to the moving matter. This is an extreme limiting case which can provide a useful reference against which to compare subsequent more complicated astrophysically motivated calculations. To clearly demonstrate the features of our model, we construct three-dimensional axisymmetric charged toroidal configurations around Reissner-Nordstrom black holes and compare them with equivalent configurations of electrically neutral tori.
2011
84
8
1
14
084002
Kovar, J; Slany, P; Stuchlik, Z; Karas, V; Cremaschini, C; Miller, John
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/29990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 35
social impact