Solid–liquid interfaces play a fundamental role in surface electrochemistry1, catalysis, wetting, self-assembly and biomolecular functions. The interfacial energy determines many of the properties of such interfaces, including the arrangement of the liquid molecules at the surface of the solid. Diffraction techniques are often used to investigate the structure of solid–liquid interfaces, but measurements of irregular or inhomogeneous interfaces remain challenging. Here, we report atomic- and molecular-resolution images of various organic and inorganic samples in liquids, obtained with a commercial atomic force microscope operated dynamically with small-amplitude modulation. This approach uses the structured liquid layers close to the solid to enhance lateral resolution. We propose a model to explain the mechanism dominating the image formation, and show that the energy dissipated during this process is related to the interfacial energy through a readily achievable calibration curve. Our topographic images and interfacial energy maps could provide insights into important solid–liquid interfaces.

Direct mapping of the solid-liquid adhesion energy with subnanometre resolution / Voitchovsky, K; Kuna, Jj; Contera, Sa; Tosatti, Erio; Stellacci, F.. - In: NATURE NANOTECHNOLOGY. - ISSN 1748-3387. - 5:6(2010), pp. 401-405. [10.1038/NNANO.2010.67]

Direct mapping of the solid-liquid adhesion energy with subnanometre resolution

Tosatti, Erio;
2010-01-01

Abstract

Solid–liquid interfaces play a fundamental role in surface electrochemistry1, catalysis, wetting, self-assembly and biomolecular functions. The interfacial energy determines many of the properties of such interfaces, including the arrangement of the liquid molecules at the surface of the solid. Diffraction techniques are often used to investigate the structure of solid–liquid interfaces, but measurements of irregular or inhomogeneous interfaces remain challenging. Here, we report atomic- and molecular-resolution images of various organic and inorganic samples in liquids, obtained with a commercial atomic force microscope operated dynamically with small-amplitude modulation. This approach uses the structured liquid layers close to the solid to enhance lateral resolution. We propose a model to explain the mechanism dominating the image formation, and show that the energy dissipated during this process is related to the interfacial energy through a readily achievable calibration curve. Our topographic images and interfacial energy maps could provide insights into important solid–liquid interfaces.
2010
5
6
401
405
Voitchovsky, K; Kuna, Jj; Contera, Sa; Tosatti, Erio; Stellacci, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/30036
Citazioni
  • ???jsp.display-item.citation.pmc??? 32
  • Scopus 161
  • ???jsp.display-item.citation.isi??? 150
social impact