The physics of the ice crystal surface and its interaction with adsorbates are not only of fundamental interest but also of considerable importance to terrestrial and planetary chemistry. Yet the atomic-level structure of even the pristine ice surface at low temperature is still far from well understood. This computational study focuses on the pattern of dangling H and dangling O (lone pairs) atoms at the basal ice surface. Dangling atoms serve as binding sites for adsorbates capable of hydrogen- and electrostatic bonding. Extension of the well known orientational disorder (‘‘proton disorder’’) of bulk crystal ice to the surface would natu- rally suggest a disordered dangling atom pattern; however, ex- tensive computer simulations employing two different empirical potentials indicate significant free energy preference for a striped phase with alternating rows of dangling H and dangling O atoms, as suggested long ago by Fletcher [Fletcher NH (1992) Philos Mag 66:109–115]. The presence of striped phase domains within the basal surface is consistent with the hitherto unexplained minor fractional peaks in the helium diffraction pattern observed 10 years ago. Compared with the disordered model, the striped model yields improved agreement between computations and experi- mental ppp-polarized sum frequency generation spectra.
Proton order in the ice crystal surface / Buch, V.; Groenzin, H.; Lit, I.; Shultz, M. J.; Tosatti, E.. - In: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - ISSN 0027-8424. - 105:16(2008), pp. 5969-5974. [10.1073/pnas.0710129105]
Proton order in the ice crystal surface
Tosatti, E.
2008-01-01
Abstract
The physics of the ice crystal surface and its interaction with adsorbates are not only of fundamental interest but also of considerable importance to terrestrial and planetary chemistry. Yet the atomic-level structure of even the pristine ice surface at low temperature is still far from well understood. This computational study focuses on the pattern of dangling H and dangling O (lone pairs) atoms at the basal ice surface. Dangling atoms serve as binding sites for adsorbates capable of hydrogen- and electrostatic bonding. Extension of the well known orientational disorder (‘‘proton disorder’’) of bulk crystal ice to the surface would natu- rally suggest a disordered dangling atom pattern; however, ex- tensive computer simulations employing two different empirical potentials indicate significant free energy preference for a striped phase with alternating rows of dangling H and dangling O atoms, as suggested long ago by Fletcher [Fletcher NH (1992) Philos Mag 66:109–115]. The presence of striped phase domains within the basal surface is consistent with the hitherto unexplained minor fractional peaks in the helium diffraction pattern observed 10 years ago. Compared with the disordered model, the striped model yields improved agreement between computations and experi- mental ppp-polarized sum frequency generation spectra.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.