The convex set of density operators of an N-level quantum mechanical system foliates as a complex flag manifold, where each leaf is identified with the adjoint unitary orbit of the eigenvalues of a density matrix. For an isospectral bilinear control system evolving on such an orbit, the state feedback stabilization problem admits a natural Lyapunov-based time-varying feedback design. A global description of the domain of attraction of the closed-loop system can be provided based on a "root-space"-like structure of the cone of density operators. The converging conditions are time independent but depend on the topology of the flag manifold: it is shown that the closed loop must have a number of equilibria at least equal to the Euler characteristic of the manifold, thus imposing topological obstructions to global stabilizability.
Feedback stabilization of isospectral control systems on complex flag manifolds: application to quantum ensemble
Altafini, Claudio
2007-01-01
Abstract
The convex set of density operators of an N-level quantum mechanical system foliates as a complex flag manifold, where each leaf is identified with the adjoint unitary orbit of the eigenvalues of a density matrix. For an isospectral bilinear control system evolving on such an orbit, the state feedback stabilization problem admits a natural Lyapunov-based time-varying feedback design. A global description of the domain of attraction of the closed-loop system can be provided based on a "root-space"-like structure of the cone of density operators. The converging conditions are time independent but depend on the topology of the flag manifold: it is shown that the closed loop must have a number of equilibria at least equal to the Euler characteristic of the manifold, thus imposing topological obstructions to global stabilizability.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.