or a control system on a matrix Lie group with one or more configuration constraints that are not left/right invariant, finding the combinations of (kinematic) control inputs satisfying the motion constraints is not a trivial problem. Two methods, one coordinate-dependent and the other coordinate-free are suggested. The first is based on the Wei-Norman formula; the second on the calculation of the annihilator of the coadjoint action of the constraint one-form at each point of the group manifold. The results are applied to a control system on SE(3) with a holonomic inertial constraint involving the noncommutative part in a nontrivial way. The difference in terms of compactness of the result between the two methods is considerable.

Motion on submanifolds of noninvariant holonomic constraints for a kinematic control system evolving on a matrix Lie group

Altafini, Claudio;
2003-01-01

Abstract

or a control system on a matrix Lie group with one or more configuration constraints that are not left/right invariant, finding the combinations of (kinematic) control inputs satisfying the motion constraints is not a trivial problem. Two methods, one coordinate-dependent and the other coordinate-free are suggested. The first is based on the Wei-Norman formula; the second on the calculation of the annihilator of the coadjoint action of the constraint one-form at each point of the group manifold. The results are applied to a control system on SE(3) with a holonomic inertial constraint involving the noncommutative part in a nontrivial way. The difference in terms of compactness of the result between the two methods is considerable.
2003
50
241
250
Altafini, Claudio; R., Frezza
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/30227
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact