Motivation: Within Flux Balance Analysis, the investigation of complex subtasks, such as finding the optimal perturbation of the network or finding an optimal combination of drugs, often requires to set up a bilevel optimization problem. In order to keep the linearity and convexity of these nested optimization problems, an ON/OFF description of the effect of the perturbation (i.e. Boolean variable) is normally used. This restriction may not be realistic when one wants, for instance, to describe the partial inhibition of a reaction induced by a drug.Results: In this paper we present a formulation of the bilevel optimization which overcomes the oversimplified ON/OFF modeling while preserving the linear nature of the problem. A case study is considered: the search of the best multi-drug treatment which modulates an objective reaction and has the minimal perturbation on the whole network. The drug inhibition is described and modulated through a convex combination of a fixed number of Boolean variables. The results obtained from the application of the algorithm to the core metabolism of E.coli highlight the possibility of finding a broader spectrum of drug combinations compared to a simple ON/OFF modeling.Conclusions: The method we have presented is capable of treating partial inhibition inside a bilevel optimization, without loosing the linearity property, and with reasonable computational performances also on large metabolic networks. The more fine-graded representation of the perturbation allows to enlarge the repertoire of synergistic combination of drugs for tasks such as selective perturbation of cellular metabolism. This may encourage the use of the approach also for other cases in which a more realistic modeling is required. © 2013 Facchetti and Altafini; licensee BioMed Central Ltd.

Partial inhibition and bilevel optimization in flux balance analysis / Facchetti, G; Altafini, Claudio. - In: BMC BIOINFORMATICS. - ISSN 1471-2105. - 14:1(2013), pp. 344.1-344.14. [10.1186/1471-2105-14-344]

Partial inhibition and bilevel optimization in flux balance analysis

Altafini, Claudio
2013-01-01

Abstract

Motivation: Within Flux Balance Analysis, the investigation of complex subtasks, such as finding the optimal perturbation of the network or finding an optimal combination of drugs, often requires to set up a bilevel optimization problem. In order to keep the linearity and convexity of these nested optimization problems, an ON/OFF description of the effect of the perturbation (i.e. Boolean variable) is normally used. This restriction may not be realistic when one wants, for instance, to describe the partial inhibition of a reaction induced by a drug.Results: In this paper we present a formulation of the bilevel optimization which overcomes the oversimplified ON/OFF modeling while preserving the linear nature of the problem. A case study is considered: the search of the best multi-drug treatment which modulates an objective reaction and has the minimal perturbation on the whole network. The drug inhibition is described and modulated through a convex combination of a fixed number of Boolean variables. The results obtained from the application of the algorithm to the core metabolism of E.coli highlight the possibility of finding a broader spectrum of drug combinations compared to a simple ON/OFF modeling.Conclusions: The method we have presented is capable of treating partial inhibition inside a bilevel optimization, without loosing the linearity property, and with reasonable computational performances also on large metabolic networks. The more fine-graded representation of the perturbation allows to enlarge the repertoire of synergistic combination of drugs for tasks such as selective perturbation of cellular metabolism. This may encourage the use of the approach also for other cases in which a more realistic modeling is required. © 2013 Facchetti and Altafini; licensee BioMed Central Ltd.
2013
14
1
1
14
344
Facchetti, G; Altafini, Claudio
File in questo prodotto:
File Dimensione Formato  
document.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/30335
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact