We explicitly construct bases for meromorphic λ-differentials over genus g Riemann surfaces. With the help of these bases we introduce a new operator formalism over Riemann surfaces which closely resembles the operator formalism on the sphere. As an application we calculate the propagators for b-c systems with arbitrary integer or half-integer λ (in the Ramond and Neveu-Schwarz sectors). We also give explicit expressions for the zero modes and for the Teichmüller deformations for a generic Riemann surface. © 1989 Springer-Verlag.

A global operator formalism on higher genus Riemann surfaces: b-c systems / Bonora, L.; Lugo, A.; Matone, M.; Russo, J.. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 123:2(1989), pp. 329-352. [10.1007/BF01238861]

A global operator formalism on higher genus Riemann surfaces: b-c systems

Bonora, L.;
1989-01-01

Abstract

We explicitly construct bases for meromorphic λ-differentials over genus g Riemann surfaces. With the help of these bases we introduce a new operator formalism over Riemann surfaces which closely resembles the operator formalism on the sphere. As an application we calculate the propagators for b-c systems with arbitrary integer or half-integer λ (in the Ramond and Neveu-Schwarz sectors). We also give explicit expressions for the zero modes and for the Teichmüller deformations for a generic Riemann surface. © 1989 Springer-Verlag.
1989
123
2
329
352
Bonora, L.; Lugo, A.; Matone, M.; Russo, J.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/30529
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 78
social impact