After having defined a 3-strings midpoint-inserted vertex for the bc system, we analyze the relation between gh=0 states (wedge states) and gh=3 midpoint duals. We find explicit and regular relations connecting the two objects. In the case of wedge states this allows us to write down a spectral decomposition for the gh=0 Neumann matrices, despite the fact that they are not commuting with the matrix representation of K1. We thus trace back the origin of this noncommutativity to be a consequence of the imaginary poles of the wedge eigenvalues in the complex -plane. With explicit reconstruction formulas at hand for both gh=0 and gh=3, we can finally show how the midpoint vertex avoids this intrinsic noncommutativity at gh=0, making everything as simple as the zero momentum matter sector.
Ghost story. III. Back to ghost number zero / Bonora, L.; Maccaferri, C.; Tolla, D. D.. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2009:11(2009), pp. 1-39. [10.1088/1126-6708/2009/11/086]
Ghost story. III. Back to ghost number zero
Bonora, L.;
2009-01-01
Abstract
After having defined a 3-strings midpoint-inserted vertex for the bc system, we analyze the relation between gh=0 states (wedge states) and gh=3 midpoint duals. We find explicit and regular relations connecting the two objects. In the case of wedge states this allows us to write down a spectral decomposition for the gh=0 Neumann matrices, despite the fact that they are not commuting with the matrix representation of K1. We thus trace back the origin of this noncommutativity to be a consequence of the imaginary poles of the wedge eigenvalues in the complex -plane. With explicit reconstruction formulas at hand for both gh=0 and gh=3, we can finally show how the midpoint vertex avoids this intrinsic noncommutativity at gh=0, making everything as simple as the zero momentum matter sector.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.