Stick-slip -- the sequence of mechanical instabilities through which a slider advances on a solid substrate -- is pervasive throughout sliding friction, from nano to geological scales. Here we suggest that trapped cold ions in an optical lattice can also be of help in understanding stick-slip friction, and also the way friction changes when one of the sliders undergoes structural transitions. For that scope, we simulated the dynamical properties of a 101-ions chain, driven to slide back and forth by a slowly oscillating electric field in an incommensurate periodic "corrugation" potential of increasing magnitude U0. We found the chain sliding to switch, as U0 increases and before the Aubry transition, from a smooth-sliding regime with low dissipation to a stick-slip regime with high dissipation. In the stick-slip regime the onset of overall sliding is preceded by precursor events consisting of partial slips of few ions only, leading to partial depinning of the chain, a nutshell remnant of precursor events at the onset of motion also observed in macroscopic sliders. Seeking to identify the possible effects on friction of a structural transition, we reduced the trapping potential aspect ratio until the ion chain shape turned from linear to zigzag. Dynamic friction was found to rise at the transition, reflecting the opening of newer dissipation channels.

Stick-slip nanofriction in trapped cold ion chains / Mandelli, D.; Vanossi, A.; Tosatti, Erio. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 87:19(2013), pp. 1-8. [10.1103/PhysRevB.87.195418]

Stick-slip nanofriction in trapped cold ion chains

Tosatti, Erio
2013-01-01

Abstract

Stick-slip -- the sequence of mechanical instabilities through which a slider advances on a solid substrate -- is pervasive throughout sliding friction, from nano to geological scales. Here we suggest that trapped cold ions in an optical lattice can also be of help in understanding stick-slip friction, and also the way friction changes when one of the sliders undergoes structural transitions. For that scope, we simulated the dynamical properties of a 101-ions chain, driven to slide back and forth by a slowly oscillating electric field in an incommensurate periodic "corrugation" potential of increasing magnitude U0. We found the chain sliding to switch, as U0 increases and before the Aubry transition, from a smooth-sliding regime with low dissipation to a stick-slip regime with high dissipation. In the stick-slip regime the onset of overall sliding is preceded by precursor events consisting of partial slips of few ions only, leading to partial depinning of the chain, a nutshell remnant of precursor events at the onset of motion also observed in macroscopic sliders. Seeking to identify the possible effects on friction of a structural transition, we reduced the trapping potential aspect ratio until the ion chain shape turned from linear to zigzag. Dynamic friction was found to rise at the transition, reflecting the opening of newer dissipation channels.
2013
87
19
1
8
195418
https://arxiv.org/abs/1303.7132
Mandelli, D.; Vanossi, A.; Tosatti, Erio
File in questo prodotto:
File Dimensione Formato  
PhysRevB.87.195418.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/30541
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact