We investigate Caffarelli-Kohn-Nirenberg type inequalities for the weighted biharmonic operator in cones, both under Navier and Dirichlet boundary conditions. Moreover, we study existence and qualitative properties of extremal functions. In particular, we show that in some cases extremal functions do change sign; when the domain is the whole space, we prove some breaking symmetry phenomena.

On Caffarelli-Kohn-Nirenberg-type Inequalities for the Weighted Biharmonic Operator in Cones

Musina, Roberta
2011-01-01

Abstract

We investigate Caffarelli-Kohn-Nirenberg type inequalities for the weighted biharmonic operator in cones, both under Navier and Dirichlet boundary conditions. Moreover, we study existence and qualitative properties of extremal functions. In particular, we show that in some cases extremal functions do change sign; when the domain is the whole space, we prove some breaking symmetry phenomena.
2011
79
2
657
687
http://link.springer.com/article/10.1007%2Fs00032-011-0167-2
Caldiroli, P; Musina, Roberta
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/32158
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 26
social impact