Given an open set $\Omega$, we consider the problem of providing sharp lower bounds for $\lambda_2(\Omega)$, i.e. its second Dirichlet eigenvalue of the p-Laplace operator. After presenting the nonlinear analogue of the Hong-Krahn-Szego inequality, asserting that the disjoint unions of two equal balls minimize the second eigenvalue among open sets of given measure, we improve this spectral inequality by means of a quantitative stability estimate. The extremal cases p = 1 and p = $\infty$ are considered as well. Copyright 2012 Springer-Verlag Berlin Heidelberg.

On the Hong-Krahn-Szego inequality for the p-Laplace operator

FRANZINA, Giovanni
2013-01-01

Abstract

Given an open set $\Omega$, we consider the problem of providing sharp lower bounds for $\lambda_2(\Omega)$, i.e. its second Dirichlet eigenvalue of the p-Laplace operator. After presenting the nonlinear analogue of the Hong-Krahn-Szego inequality, asserting that the disjoint unions of two equal balls minimize the second eigenvalue among open sets of given measure, we improve this spectral inequality by means of a quantitative stability estimate. The extremal cases p = 1 and p = $\infty$ are considered as well. Copyright 2012 Springer-Verlag Berlin Heidelberg.
2013
141
3-4
537
557
Brasco, L; Franzina, Giovanni
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/32437
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact