We consider the problem of determining all pairs (c_1, c_2) of Chern classes of rank 2 bundles that are cokernel of a skew-symmetric matrix of linear forms in 3 variables, having constant rank 2c_1 and size 2c_1+2. We completely solve the problem in the "stable" range, i.e. for pairs with c_1^2-4c_2<0, proving that the additional condition c_2\le {{c_1+1}\choose 2} is necessary and sufficient. For c_1^2-4c_2\ge 0, we prove that there exist globally generated bundles, some even defining an embedding of P^2 in a Grassmannian, that cannot correspond to a matrix of the above type. This extends previous work on c_1\le 3.
Planes of matrices of constant rank and globally generated vector bundles / Boralevi, A.; Mezzetti, E.. - In: ANNALES DE L'INSTITUT FOURIER. - ISSN 0373-0956. - 65:5(2015), pp. 2069-2089.
Titolo: | Planes of matrices of constant rank and globally generated vector bundles |
Autori: | Boralevi, Ada; Mezzetti, E. |
Rivista: | |
Data di pubblicazione: | 2015 |
Volume: | 65 |
Fascicolo: | 5 |
Pagina iniziale: | 2069 |
Pagina finale: | 2089 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.5802/aif.2983 |
Fulltext via DOI: | http://dx.doi.org/10.5802/aif.2983 |
URL: | http://aif.cedram.org/cedram-bin/article/AIF_2015__65_5_2069_0.pdf https://arxiv.org/abs/1402.2167 |
Appare nelle tipologie: | 1.1 Journal article |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
AIF_2015__65_5_2069_0.pdf | Versione Editoriale (PDF) | ![]() | Open Access Visualizza/Apri |