Motivated by Wilmshursts conjecture, we investigate the zeros of harmonic polynomials. We utilize a certified counting approach, which is a combination of two methods from numerical algebraic geometry: numerical polynomial homotopy continuation to compute a numerical approximation of each zero and Smales alpha theory to certify the results. We provide new examples of harmonic polynomials having the most extreme number of zeros known so far; we also study the mean and variance of the number of zeros of random harmonic polynomials. © 2015 Taylor and Francis Group, LLC.
Experiments on the zeroes of harmonic polynomials using certified counting
Lerario, Antonio;
2015-01-01
Abstract
Motivated by Wilmshursts conjecture, we investigate the zeros of harmonic polynomials. We utilize a certified counting approach, which is a combination of two methods from numerical algebraic geometry: numerical polynomial homotopy continuation to compute a numerical approximation of each zero and Smales alpha theory to certify the results. We provide new examples of harmonic polynomials having the most extreme number of zeros known so far; we also study the mean and variance of the number of zeros of random harmonic polynomials. © 2015 Taylor and Francis Group, LLC.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.